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 While aggregate global policy exists to combat climate change, there is significantly 

less understanding about individual countries’ unique pathways to reduce emissions of carbon 

dioxide and limit climate impacts. Research is lacking concerning the ability of small countries, 

island nations, developing countries, and countries with fossil fuel-based economies to reach 

global climate targets. While some research exists about individual countries, this study utilizes 

multiple data analytics techniques to understand their unique emissions trends and what drives 

those trends. Ten study countries were selected and initially analyzed for trends in their 

emissions from fossil fuel combustion using quadratic regression. Drivers of emissions were 

further analyzed using the Kaya Identity and a decomposition analysis using all countries with 

available data. A cluster analysis was performed on this global set of countries to identify how 

these Kaya factors -population, wealth, energy intensity, and carbon intensity- could be used 

to identify similar groups of emitters. The best performing clustering was formed when three 

clusters were selected; one large cluster of 146 countries, an intermediate cluster of 23 

countries mainly driven by growth in wealth (per capita gross domestic product (GDP)), and 
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four countries mainly driven by decreasing energy intensity (total energy supply per unit of 

GDP) and growing wealth. This model suggested separate treatment of the 3 “heavy emitters” 

(China, the United States and India). While the heavy emitters have followed certain pathways 

to where their emissions are now, this research shows that other countries also have unique 

drivers and will follow individual emissions pathways. While the cluster modeling showed that 

some grouping is possible, emissions drivers are still largely specific to a country. As more 

countries continue to emit more heavily over time, climate targets will need to reflect these 

differences between countries instead of simple targets currently used by the international 

community.  
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Emissions of carbon dioxide (CO2) from the combustion of fossil fuels are related to 

an increase in the amount of CO2 in the Earth’s atmosphere and a significant shift in the 

global climate system. It is widely understood that there is a significant and critical need for 

society to reduce emissions of CO2, but there has been difficulty in achieving international 

agreement on how this can be achieved, and how the burden should be distributed. This 

thesis utilizes data on emissions of CO2 (represented by the carbon content of the emitted 

CO2) at the country level to explore the patterns of emissions, the changes in emissions over 

time, and the technical as well as economic factors that are driving the changes. While the 

emissions patterns are based on fuel consumption and reveal how a country is emitting over 

time, the drivers are based on causes of emissions and reveal why a country is emitting the 

way they are over time. Carbon emissions have been increasing and shifting over time as 

nations develop their economies, as populations increase and shift, and energy demand and 

resources change.  

The current leaders in global emissions from fossil fuel combustion and other 

industrial processes are China, the United States and India. In 1990, the United Sates was the 

heaviest emitter and the only country emitting over one Gigatons of Carbon (GtC) (Gilfillan 

et al. 2019). China surpassed the United States as the global leader in emissions in 2005; in 

2015 China emitted over 2.5 GtC. Although India has not surpassed the one GtC threshold, 

this total has grown about 276% since year 1990. For comparison, the global emissions total 
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has grown about 62% since 1990 (Gilfillan et al. 2019, Friedlingstein et al. 2019). In the 

years after 2015, these three countries accounted for almost 50% of global emissions. This 

demonstrates that China, the United States, and India are “heavy emitters” globally, and they 

will be referred to as such in this thesis. Figure 1 below shows the shift of emissions from 

2005-2015, and how the heavy emitters have been accelerating emissions compared to other 

countries. 

 

Emissions Levels for 2005 – 2015 for Ten Selected Countries  

Figure 1: Emissions of three selected countries between 2005 and 2015 measured in GtC (Metric Gigatons of 

Carbon). These are the three largest emitters of CO2 in 2005 – 2015. The global total is shown as a solid line for 

perspective. 

 

 

 

Figure 1 shows that the increase in total carbon emissions is connected to the 

emergence of heavy emitters such as China and India. However, all countries contribute to 
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increasing global CO2 emissions in the atmosphere, not solely the heavy emitters. Each 

country has an individual profile of emissions over time, including emissions from different 

fuel types and different drivers of emissions. These differences reflect the need for different 

pathways to mitigating emissions globally. Understanding what drives emissions allows for 

developing effective policies specific to individual nations based on how they can most 

effectively lower carbon emissions.  

Emissions are driven by the types of fuel consumed, and the characteristics of the 

society. A common way to integrate the demographic, economic, and energy aspects of CO2 

emissions of a society is the Kaya Identity (Kaya, 1990). This is an equation that relates 

carbon emissions to population, wealth, carbon intensity, and energy intensity.  CO2 

emissions can be decomposed from this identity to evaluate how each factor contributes to a 

country’s CO2 emissions over time.  

Data analytics tools are useful for interpreting large datasets that are collected over 

time, such as carbon emissions data. These tools can derive insights and lead to new 

conclusions. They are also useful for extremely large datasets. While there are examples in 

the literature of these analyses being used on single countries, there are far less applications 

of data analytics on large, global datasets.  

This analysis will use data analytics tools to answer the following questions: 

1. Beyond the 3 heavy emitters, what are some country-level patterns of emissions 

over 2005 - 2015 

2. What are the common drivers of country wide emissions over 2005 – 2015?  

3.  Can countries be clustered into groups based on their emissions drivers? 
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To answer the first question, a regression trend analysis will be used to examine ten 

specific countries emissions over time. This analysis is done to fit an equation to the curve of 

total emissions as well as emissions from liquid, solid, and gas fuel consumption. These 

curves illustrate the patterns of emissions from individual fuels in selected countries. Ten 

countries were selected to allow for simplicity and a deeper analysis of some individual 

countries. These 10 countries will be used throughout this research for comparison and 

discussion of implications of this research.  

To answer the second question, the focus is shifted from emissions fuel usage patterns 

to emissions drivers. This requires the use of the Kaya Identity to break down four drivers of 

emissions for all countries, and then a log mean Divisia index (LMDI) will be used to break 

down those factors into index values. These index values show which drivers have changed 

over time and are most greatly attributable to carbon emissions over time for every country. 

The LMDI values of the ten study countries will be presented for more in-depth comparison. 

Finally, the third question will be answered with a cluster analysis. This is an 

unsupervised learning analytics tool that will group all of the countries based on their 

common drivers. Once countries are grouped like this, the collective drivers of emissions can 

be analyzed, and a global pattern will emerge. While all countries will be used to form the 

clusters, the ten selected countries as well as some interesting cases will again be examined 

more in depth for discussion. 

Although global approaches to reduce emissions have been researched extensively 

(Allen et al., 2018), there is less research regarding an individual country’s pathway. There is 

not a universal approach to reducing emissions; a country with high emissions and a large 

economy will need to approach reducing emissions differently than a developing country, a 
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country with currently declining emissions, or even an island nation with limited natural 

resources. By studying the different approaches countries can take to reduce emissions, 

multiple policies can be developed that are tailored to specific types of countries, informing 

local decision-making to reduce global emissions. As countries are impacted by climate 

change, providing unique approaches to combating emissions will be the most effective for 

individual countries. 
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2.1 CO2 and Global Climate Change 

The Earth’s atmosphere is composed of many gases, some of which absorb infrared 

radiation and cause heat to build up within the atmosphere. These gases are known as 

greenhouse gases (GHG), and this warming from heat retention in the atmosphere is the 

greenhouse effect. Notable GHGs include CO2, water vapor, and methane (Le Treut et al., 

2007). Without the natural greenhouse effect, Earth would radiate additional heat to space 

through longwave radiation, making the surface temperature -19 oC (Le Treut et al., 2007). 

Although the greenhouse effect allows Earth to have a habitable temperature, this 

greenhouse warming effect has accelerated in the industrial era. Global atmospheric CO2 

levels have risen by 40% since pre-industrial levels (Birdsey et al., 2018). One of the largest 

causes of this increase is fossil fuel combustion, which emits CO2 and increases the 

atmospheric concentration of GHG’s (Friedlingstein et al.; 2019, Jackson et al. 2018). The 

burning of fossil fuels and cement production are responsible for 90% of net CO2 emissions 

from anthropogenic actions (Jackson et al., 2018). Increased CO2 in the atmosphere is 

stimulating changes in the climate due to increased global surface temperature, potentially 

leading to: increased frequency and duration of extreme weather events; rising sea level; 

species extinction and migration; and increased human competition for water and other 

natural resources (Allen et al., 2018; Birdsey et al., 2018; Le Treut et al., 2007).  
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2.2 Global Climate Change Policy 

Currently, there is a global initiative to address climate change and rising carbon 

emissions. This global awareness is embodied by the Intergovernmental Panel on Climate 

Change (IPCC), a group created to collect and assess the scientific information relative to 

understanding the uncertain future regarding climate change (IPCC, 2019). This assessment 

body was founded in 1988 by the United Nations Environment Programme as well as the 

World Meteorological Organization and has produced five assessment reports, along with 

multiple special reports as requested by the United Nations Framework Convention on 

Climate Change (UNFCCC) (IPCC, 2013). While the IPCC explores possibilities and 

scenarios for different levels of responses to climate change, it does not recommend that 

policymakers take specific actions. However, these assessment reports provide a scientific 

foundation for countries to utilize when making individual climate policy, and for the 

UNFCCC to utilize when making global decisions about climate policy at the United Nations 

Climate Conferences (IPCC, 2013).   

The 2018 IPCC special report on Global Warming of 1.5 oC concludes that the best 

climate outcome occurs when surface temperature remains at less than a 1.5 oC increase from 

the pre-industrial global mean temperature (Allen et al., 2018). However, the global mean 

surface temperature has been increasing at a rate of roughly 0.2 oC per decade since 1975; if 

this trend continues, a projected business-as-usual scenario suggests that the temperature 

could rise by 2 oC to 3 oC from the 2000 level by 2100 (Hansen et al. 2006). More current 

statistical research confirms that the global temperature will most likely rise by 2 oC or more 

by 2100 (Raftery et al. 2017). These temperature increases might seem inconsequential, but 

they carry large implications for the global climate system. It is estimated that 75% of warm 

weather extremes and 18% of extreme precipitation events can be attributed to the global 
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temperature rising (Fischer & Knutti, 2015). Due to these potential outcomes, the IPCC 

recommends the global mean temperature does not deviate more than 2 oC from the reference 

mean, and preferably not more than 1.5 oC (Allen et al., 2018).  

Because the mean global temperature change can be observed with a sufficient degree 

of accuracy and can be easily communicated, the 2 oC limit on warming has become a global 

benchmark (Knutti et al., 2016). This goal is simple for policymakers to communicate and 

the public to understand. However, it is an aggregate number that does not take into 

consideration the complexity of countries contributing to this goal. It is a much different 

challenge for a country like China to meet their contribution to this global limit than it is for a 

country like the Marshall Islands. An aggregate solution such as the IPCC recommends 

includes all countries but does not take into consideration the very different challenges 

individual countries will face in order to limit warming by 2 oC.  

 

2.3 CO2 Emissions Inventories 

This thesis uses the Carbon Dioxide Information Analysis Center (CDIAC) emissions 

database for analysis. This database contains emissions data by country from 1751 to 2016 

and contains information on emissions from solid fuels, liquid fuels, gas fuels, cement 

manufacture, and gas flaring (Andres et al., 1999; Gilfillan et al., 2019). Andres et al. (1999) 

estimated CO2 emissions before 1950 using energy statistics published by Etemad et al. 

(1991) and Mitchell (1983, 1992, 1993, 1995). Data after 1950 are calculated using statistics 

published by the United Nations and the methods of Marland and Rotty (1984). These United 

Nations statistics on production and trade of energy as well as nonenergy use fuels are 

collected using surveys to member countries and published in the Energy Statistical 

Yearbook (United Nations, 2009). The calculations to estimate carbon emissions are a 
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product of fuel production and consumption data, the fraction of fuel that is oxidized, and the 

average carbon content of the fuel (Marland & Rotty, 1984). Fossil fuel CO2 emissions are 

combined with data from the United States Geological Survey to estimate CO2 emissions 

from cement manufacture (Griffin, 1987; US Geological Survey, 2009). Data from the 

United States Energy Information Administration is used to supplement emissions estimates 

from gas flaring (Boden et al., 2010). 

The CDIAC database is comprised of data from the United Nations Statics Office that 

reflects reference data guided by the IPCC Guidelines (Andres et al., 2012). Outlined by the 

IPCC, the reference approach is a top-down method that calculates fossil fuel emissions from 

a country’s energy supply statistics while the sectoral method that is based on energy 

consumption in the individual sectors (Eggleston et al., 2006) 

CDIAC is not the only emissions database. A summary of some of the different 

carbon emissions databases is described by Andres et al. (2012). These databases include 

CDIAC, the Emissions Database for Global Atmospheric Research (EDGAR), the 

International Energy Agency (IEA), the Energy Information Administration of the United 

States Department of Energy (EIA) and the United Nations Framework Convention on 

Climate Change (UNFCCC) (Andres et al., 2012). These data sets are based on answers to 

surveys sent to individual countries, so estimation is required when countries return 

incomplete answers (Andres et al., 2102). These databases vary in size and focus. A database 

that considers emissions from only the United States is the Vulcan Project (Gurney et al., 

2009). The CDIAC time series of emissions is the base dataset for the global carbon budget 

and is used to inform IPCC reports for cumulative emissions. It is a comprehensive dataset 

for the purposes of this research. 
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2.4 The Kaya Identity 

The Kaya Identity is often used to decompose carbons emissions into the factors 

stimulating changes in those emissions. The Kaya Identity was first described by Professor 

Yoichi Kaya in 1990 at an IPCC presentation (Kaya, 1990). It can be used to compute what 

drives changes in CO2 emissions at a global, national, or even local level (Fan & Lei, 2016; 

Hatzigerogiou et al., 2008; Pani & Mukhopadhyay, 2010). The Kaya identity is represented 

by Eq. 1: 

𝐶 =  𝑃 ×
𝐺𝐷𝑃

𝑃
×

𝐸

𝐺𝐷𝑃
× 

𝐶

𝐸
                         (1) 

Where C is the carbon emissions at a certain time (usually a year), E is the energy 

supply, GDP is the gross domestic product, and P is population. This identity states that the 

drivers of change in CO2 emissions are population (P), wealth  (
𝐺𝐷𝑃

𝑃
), energy intensity (

𝐸

𝐺𝐷𝑃
), 

and carbon intensity (
𝐶

𝐸
).  

The Kaya Identity is used extensively in research pertaining to decomposing 

emissions. An example of this is the decomposition of emissions in Ireland by O’ Mahony 

(2013), which determined that emissions from wealth and population factors were countered 

by emissions from changes in energy intensity and carbon intensity. A decomposition of the 

Kaya factors in Ghana by Asumadu-Sarkodie and Owusu (2016) identified that changes in 

emissions are related most strongly to changes in energy use, then wealth, then population. A 

decomposition of the Kaya factors in Malaysia by Pui and Othman (2019) also found the 

need for lower energy intensity over time to counter population and economic growth over 

time in terms of emissions. Finally, a decomposition of China’s emissions from the 

agricultural sector completed by Li et al. (2014) relates the growth of wealth to increase in 
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CO2 emissions using the Kaya Identity.  Overall, the Kaya Identity is useful for its ability to 

serve as a reference point for these factors over time (Albrecht et al., 2002). 

 

2.5 Data Analytics and CO2 Emissions 

The Kaya Identity can be utilized as a scheme, but a decomposition mechanism is 

needed to understand the drivers of the change over time (Boer & Rodrigues, 2019). There 

are multiple index decomposition analysis techniques, but a LMDI has been commonly 

utilized in the literature for breaking down data within the Kaya components (Ang, 2004; 

Ang & Liu, 2001). This indexing technique decomposes annual data into changes from year 

to year, which are then summed to an index value that is standardized to the selected base 

year. Benefits of the LMDI decomposition approach include a complete decomposition, i.e. 

no residual term like in regression, and consistency in aggregation (O’Mahoney, 2013).  

Some successful LMDI analyses applied to a single country are the ones compiled on 

Greece and Ireland respectively (Hatzigeorgiou et al., 2008; O’Mahoney, 2013). While there 

is prominent literature of these decomposition techniques being applied to single countries or 

small groups of countries, there is significantly less research considering a more global 

scope. One global approach was a large scale LMDI decomposition performed on 114 

countries for the years 1992 through 2004 (Pani & Mukhopadhyay, 2010). These papers 

successfully pair the Kaya Identity as the breakdown scheme and the LMDI as the 

decomposition analytic technique to compare index values between Kaya components.  

The field of statistical learning poses great potential to further characterize complex 

interactions of drivers of CO2 emissions. Statistical learning is a framework for analyzing 

datasets that applies statistics and machine learning. Currently, it has been applied to climate 

science to reveal climate change impacts in daily weather patterns using ridge regression 
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(Sippel et al., 2020), and to determine the efficacy of neural networks in forecasting as 

opposed to traditional physically based process models (Dueben & Bauer, 2018). Regression 

approaches to trend analysis have been performed on the top 25 emitters to inform projection 

scenarios (Kone & Hume, 2010).  

A statistical learning approach that can be used in understanding CO2 emissions is 

cluster analysis. Cluster analysis is an analytics tool that groups items that are more similar 

into clusters, thus separating items that are dissimilar into different clusters. This approach is 

useful for grouping countries while still considering the decomposition of individual 

countries’ emissions over time. An example of a global approach using cluster analysis was 

conducted utilizing K-Means cluster analysis on 87 countries based on six factors to compare 

carbon emissions and life expectancy (Lamb et al., 2014). A further example of a cluster 

analysis coupled with an LMDI analysis was used by Liao et al. (2019) to examine the 

driving factors of terminal electricity generation. Clustering analysis is effective for purposes 

like these where dividing data in groups can reveal relationships between group members and 

differences between groups (Yu et al., 2012). 

While studies have been completed on the emissions of individual countries 

(Hatzigeorgiou et al. 2008; O’Mahoney, 2013), research is lacking concerning global drivers 

of emissions. Given the advancement of data analytics, there are new tools that can be 

applied to questions like these. One of these is the cluster analysis. Some of the most global 

research efforts are using LMDI or correlation techniques but are not considering grouping 

techniques for multiple countries to be compared such as the cluster analysis (Le Quéré et al., 

2019; Pani & Mukhopadhyay 2010). The one recent example of a cluster modeling paper 

applied to all countries (Lamb et al., 2014) does not solely examine carbon emissions. This 
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research will serve as an example of big data techniques applied to a global emissions study 

to answer whether countries can be clustered into groups based on their emissions drivers. 

 Ultimately, given the latest IPCC report on curbing the global temperature change to 

1.5 oC, there is reason to study lowering global emissions to slow temperature change. 

Mitigating carbon emissions is one of the primary ways to do this and must be done by all 

countries, not just the heavy emitters. While there is research on how individual countries are 

emitting, there is significantly less literature considering how all global countries are emitting 

comparatively. This research will use cluster modeling, a data analytics technique, to address 

this problem and provide information on how some individual countries as well as groups of 

countries are emitting.  
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3.1 Data Sources 

Data for this analysis were collected from several sources and synthesized. Population 

data were collected from the United Nations World Population Prospects in 2019 as 

thousands of individuals (United Nations, 2019). This dataset includes total population (both 

sexes combined) estimates by country in thousands of people.  

GDP data were collected from the World Bank World Development Indicators 

database (World Bank, 2015). GDP data were collected in constant (adjusted for the price of 

inflation) PPP (purchasing power parity) in 2011 international dollars. An international dollar 

is defined by the World Bank as being worth the same amount of goods and services as a 

United States dollar for that given time (World Bank, 2020).  

The energy intensity data were compiled as the ratio of primary energy supply, in 

Megajoules (MJ) to GDP, and were also collected from the World Bank World Development 

Indicators database (World Bank, 2015). The carbon emissions data were collected from the 

CDIAC dataset, which contains emissions estimates in metric tons of carbon for solid fuel 

consumption, liquid fuel consumption, gas fuel consumption, emissions from cement 

manufacture, emissions from gas flaring, and per capita emissions at the national and global 

level for the years 1751 – 2016 (Gilfillan et al., 2019). CO2 emissions from bunker fuels 

(used to fuel cargo ships) are also present in this dataset, although were not included in 

national totals. This information is summarized in the Table 1 below.  
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Table 1: Source information of primary datasets used in this analysis 

 

Data Units Years   Source 

Population Residents (Thousands) 1950-2100 

 
 

  (United Nations, 2019) 

  

GDP 2011 International Dollars 

  

1960-2019 
 

  (World Bank, 2015 

  
Primary 

Energy 

MJ

2011 International Dollars
 

 

1960-2019 
 

  (World Bank, 2015) 

 

  
Carbon 

Emissions  

C (metric tons) 1751 - 2016 
 

  (Gilfillan et al. 2019) 

 

 

Data were collected for all countries from these four sources for the years 2005 to 

2015. Countries that did not have sufficient data to complete an analysis for this set of years 

were removed from the combined dataset. The CDIAC emissions estimates were expressed 

in metric tons of C, not CO2, for easier tracking of mass flows in the global carbon cycle 

(Friedlingstein et al., 2019). To convert from metric tons of carbon to CO2, the CDIAC 

estimates can be multiplied by 3.67 to account for the differences in molecular weights (Ryan 

et al., 2010). For the purpose of this research, these estimates will be left in terms of C, not 

CO2. 

 

 

3.2 Trend Analysis 

To address the question of differences in patterns of emissions over time, 10 countries 

were selected as a study group to identify potential variation in emissions trends. This part of 

the analysis was conducted to explain how some countries emit. Since these ten countries 

will be tracked throughout the analysis, understanding the patterns of emissions will be 

useful for discussion later and deeper understanding about the complete emissions profile of 

these countries. These 10 countries, called the study countries in this paper, include heavy 

emitting countries, countries with fossil fuel dependence, nations with high potential burdens 
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from climate change, and other widely divergent natures from different continents. Emissions 

information about these countries can be found in Table 2 for year 2005 and Table 3 for year 

2015 below. These countries will be re-examined for discussion and comparison later in this 

analysis. 

Table 2: Estimates of carbon emissions in from fossil fuel combustion for 10 selected countries in 2005. Note 

that total emissions also include emissions from cement manufacture and gas flaring. CO2 emissions are in 

metric tons of carbon. Per Capita emissions are in metric tons of Carbon per person. 

 
Study 

Country  

Total 

Emissions 

(2005) 

Emissions from 

solid fuel 

consumption 

(2005)  

Emissions from 

liquid fuel 

consumption 

(2005)  

Emissions from 

gas fuel 

consumption 

(2005)  

Per-capita 

emissions 

(2005) 

Argentina 4.4 × 107 8.92 × 105 1.96 × 107 2.24 × 107 1.13 

 

China 1.61 × 109 1.21 × 109 2.32× 108 2.32 × 107 1.22 

Ethiopia 1.34 × 106 0 1.18 × 106 0 0.02 

Germany 2.18 × 108 8.62 × 107 7.86 × 107 4.86 × 107 2.66 

Iceland 6.08 × 105 1.03 × 105 4.87 × 105 0 2.06 

India 3.33 × 108 2.18 × 108 8.18 × 107 1.38 × 107 0.29 

Marshall Islands 3.10 × 104 0 3.10 × 104 0 0.60 

Saudi Arabia 1.08 × 108 0 7.01 × 107 3.47 × 107 4.54 

Thailand 6.20 × 107 1.12 × 107 3.09 × 107 1.47 × 107 0.95 

US 1.58 × 109 5.79 × 108 6.68 × 108 3.17 × 108 5.28 
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Table 3: Descriptions of 10 countries emissions habits for 2015 in thousand metric tons. Note that total 

emissions also include emissions from cement manufacture and gas flaring. CO2 emissions are in metric tons of 

carbon. Per Capita emissions are in MtC. 

 
Study  

Country 

Total 

Emissions 

(2015) 

Emissions from 

solid fuel 

consumption 

(2015)  

Emissions from 

liquid fuel 

consumption 

(2015)  

Emissions from 

gas fuel 

consumption 

(2015)  

Per-capita 

emissions 

(2015) 

Argentina 5.48 × 107 1.43 × 106 2.50 × 107 2.68 × 107 1.26 

China 2.77× 109 1.98 × 109 3.62 × 108 1.00 × 108 1.98 

Ethiopia 3.74 × 106 2.98 × 105 2.423 × 106 0 0.04 

Germany 1.98 × 108 8.41 × 107 6.92 × 107 6.92 × 107 2.43 

Iceland 5.42 × 105 9.60 × 104 4.46 × 105 0 1.64 

India 6.35× 108 4.03 × 108 1.63 × 108 2.70 × 107 0.48 

Marshall Islands 3.90 × 104 0 3.90 × 104 0 0.74 

Saudi Arabia 
 

2.00 × 108 
0 1.29× 108 6.28 × 107 6.35 

Thailand 7.56× 107 1.76 × 107 2.94 × 107 2.36× 107 1.10 

US 1.40 × 109 3.96 × 108 5.87 × 108 4.05 × 108 4.33 

 

These ten countries were used for trend analysis to further understand current 

emissions trends and project possible future emissions. Trend analysis was completed using 

ordinary least squares regression for each country and each type of fuel emissions. This 

involved using a set of predictors, 𝒙𝒏, that related to a linear response in a variable Y (Eq. 2), 

 

𝑌 = 𝛽0 + 𝛽1𝑥1 + 𝛽2 + ⋯ 𝛽𝑛𝑥𝑛   (2) 

 

 

where 𝛽𝑛 symbolized the response of Y because of 𝑥𝑛. The beta weights, 𝛽1,2,…𝑛, are assessed 

by determining the minimal sum of squared distances between the predicted and actual values 

of Y. The predictors in this equation can characterize different variables or transformations of 

a single variable; in this analysis, the two predictors were based on a polynomial transformation 

of time in years. Thus, the trend analysis was reduced to estimating 3 parameters based on the 

transformed yearly values: 𝛽0, 𝛽1, and 𝛽2. Eq. 2 could then be expressed as: 
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𝑌 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2   (3) 

 

Where x was the number of years since the reference year, 2005. Using a quadratic fit 

assumed that the acceleration of emissions is constant, which was consistent with studies of 

global emissions (Andres et al., 2012). By computing this trend analysis on total, solid fuel, 

liquid fuel, and gas fuel emissions, specific patterns in emissions by fuel type can be 

analyzed. Historic solid fuel, liquid fuel, and gas fuel emissions data points for 2005 through 

2015 were fit using Eq. 3. To evaluate the fit of the least squares’ regression models, the R2 

value was computed for each model. R2 is a ratio that signifies the proportion of variance of a 

dependent variable explained by the independent variable in a regression model. It is 

calculated by finding the sum of the squared difference between the predicted and actual 

values for each observation and dividing by the variance of the observations. Values of R2 

could range from 0 to 1; a value of 1 would indicate that the regression model perfectly 

aligns with the observed points. An R2 value of 0 indicates that the model is not explaining 

any of the observed variance.  

The rates of change of emissions data points over the ten-year period were examined. 

This measure will show which countries have increased emissions the most over time. This 

was examined for emissions from solid fuel consumption, emissions from liquid fuel 

consumption, and emissions from gas fuel consumption.  

Once the best fit trends were determined for each of the 10 countries and their 

emissions patterns, they were extended to the year 2050 to create a business as usual 

projection. The business as usual pattern was based of the sum of the emissions from solid 

fuel consumption, emissions from liquid fuel consumption, and emissions from gas fuel 
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consumption. This projection implied that no actions were taken to affect the current trend of 

carbon emissions, and current conditions continue unhindered into the future. These analyses 

reveal which countries emissions have the potential to become excessive over time if no 

corrective action is taken. 

   

3.3 Kaya Factors and LMDI Decomposition 

In order to further answer what drives countries to emit, an LMDI analysis was 

completed. This analysis was used to construct index values from the continuous time series 

data that was collected on each country from 2005 – 2015. These index values are useful for 

comparison since they are summaries and condense a time series into a single value. These 

LMDI values reflect how a certain Kaya component affects, or drives, emissions over time. 

To assess changes in emissions, C, to a certain Kaya factor, Cx, over time, Eq. 1 was 

rewritten as follows:  

 

𝐶 ≡ 𝑃 ∗
𝐺𝐷𝑃

𝑃
∗ 

𝐸

𝐺𝐷𝑃
∗  

𝐶

𝐸
= 𝐶𝑝 ∗ 𝐶𝑊 ∗ 𝐶𝐸𝐼 ∗ 𝐶𝐶𝐼 (4) 

 

 

where 𝐶𝑝 is the emissions from population, 𝐶𝑊 is the emissions from wealth, 𝐶𝐸𝐼 is the 

emissions from energy intensity, and 𝐶𝐶𝐼 is the emissions from carbon intensity.  Changes in 

emissions were evaluated between the years 2005 and 2015. The variable units and data 

sources are summarized in Table 1. Since energy supply (E in Eq. 1 and Eq. 4) data were not 

available from the data source in Table 1, the energy intensity data were multiplied by the 

GDP data to get this value for calculating Carbon Intensity (
𝐶

𝐸
 or 𝐶𝐶𝐼).  

 Generally, changes in emissions, Δ𝐶, from the reference year 𝑡1 to year 𝑡2 were 

decomposed exactly, i.e. no residual terms, as follows. In this equation, Δ𝐶𝑥 was the change 
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in total emissions while Δ𝐶𝑃 was the change in emissions from change in population, Δ𝐶𝑊 

was the change in emissions from change in wealth, Δ𝐶𝐸𝐼 was the change in emissions from 

change in energy intensity, and Δ𝐶𝐶𝐼 was the change in emissions from change in carbon 

intensity:  

Δ𝐶 = Δ𝐶𝑃 + Δ𝐶𝑊 +  Δ𝐶𝐸𝐼 + Δ𝐶𝐶𝐼   (5) 
 

Where: 

Δ𝐶𝑥 =
𝐶𝑡2−𝐶𝑡1

ln (𝐶𝑡2)−ln (𝐶𝑡1)
ln

𝐶𝑥
𝑡2

𝐶𝑥
𝑡1

    (6) 

 

Δ𝐶𝑥 represented the change in emissions that was attributable to changes in factor x over the 

time period  𝑡1 (2005) to year 𝑡2 (2015). This decomposition gave one final value per Kaya 

component. Emissions were decomposed for every country with available data for the years 

2005 and 2015. The analysis was focused on the ten selected countries in section 3.1. The 

resulting LMDI values were then used in a global cluster analysis.   

 

 

 

3.4 Cluster Analysis 

Cluster analysis was conducted to address the question of whether countries could be 

grouped meaningfully based on LMDI values. The index values from Eq. 6 were used as 

inputs for this analysis. Cluster modeling is an unsupervised machine learning approach that 

involves grouping data points by their similarities into clusters, and separating clusters based 

on their differences. In this case, unsupervised means a clustering model with unlabeled data 

present rather than a classification model that uses only labelled data (Jain 2010).  

This analysis used k-means clustering, which is a type of centroid clustering. In this analysis, 

a number of clusters (k) were created based on assigning data points to k number of 
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predefined clusters. This was computed by assigning each data point to a random mean based 

on the selected number of clusters and a distance metric, e.g. Euclidean, Manhattan, or 

Pearson.  

The distance metric was an important part of the cluster model process because it 

determined how objects would be considered similar and how the clusters would form. For 

this analysis, Euclidean distance was used to calculate the shortest distances between objects 

in a straight line, instead of the Manhattan distance (a measurement of gridded distance) or 

the Pearson distance (a distance that is based on correlation of objects) (Irani et al., 2016).  

The K-means algorithm began by selecting k (the predetermined number of clusters) 

objects from the dataset and assigning them as centroids: the randomly selected means of the 

clusters. The other objects from the dataset were then assigned to the closest centroid based 

on the minimum Euclidean distance between that object and the nearest centroid. The 

preliminary clusters were then formed. At this point, the mean values were recalculated 

based on the newly formed clusters, and any objects that were closer to the mean of a 

different cluster were rearranged accordingly. The cluster means would continually be 

updated, and objects would continue to be reassigned iteratively until objects remain in their 

respective clusters. At this point, the clusters have stabilized (Jain, 2010). 

The ultimate goal of K-means clustering was to minimize the error, or distance, 

between the objects and the centroid mean. This distance was known as the within cluster 

variation. The equation used to determine the within cluster variation for an individual cluster 

CK is described as follows in Eq. 7: 

 

𝑊(𝐶𝐾) =  ∑ (𝑥𝑖 − 𝜇𝐾)2
𝑥𝑖 ∈ 𝐶𝐾

    (7) 
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Where 𝑊(𝐶𝐾) is the within cluster variation, 𝑥𝑖 is an object in cluster 𝐶𝐾, and 𝜇𝐾 is 

the cluster mean of 𝐶𝐾. The total within cluster variation could be minimized by Eq. 8, which 

describes the total within cluster variation for all clusters 1 through K in the model: 

 

𝑇𝑜𝑡𝑎𝑙  𝑊(𝐶𝐾) =  ∑ ∑ (𝑥𝑖 − 𝜇𝐾)2
𝑥𝑖 ∈ 𝐶𝐾

𝐾
𝐾=1    (8) 

 

Where 𝑇𝑜𝑡𝑎𝑙 𝑊(𝐶𝐾) is the total within cluster variation. Another name for the within 

cluster variation is the within cluster sum of squares (WSS). A smaller WSS value indicated 

a smaller distance between cluster objects and their respective means, and overall more 

compact clusters. A larger WSS value indicated a less compact cluster. More compact 

clusters were preferred because they indicated higher goodness of fit, or groups of very 

similar objects. Less compact clusters indicated groups of less similar objects. Because the 

WSS value was dependent on the number of objects in a cluster, it was important to compare 

clusters using variance rather than the WSS. Variance could be defined as the WSS value 

divided by the number of members in the cluster. A higher variance implied the clusters are 

more spread out. A lower variance implied the clusters are more compact, and thus more 

similar.    

It was also useful to know the distance between cluster centroids to determine how 

similar entire clusters are to one another. This measure can be described as the between sum 

of squares distance (BSS). This value was calculated by first computing the squared 

Euclidean distance from one cluster centroid to all other cluster centroids, then repeating for 

K clusters in the model. The total BSS distance was the sum of all of these squared distances. 

A higher value indicated less similar or clusters that are farther apart, while a lower value 

indicated more similar clusters or clusters that were closer together. An optimal cluster model 
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would have a large BSS and a small WSS, meaning that the distance within clusters was 

small and the distance between clusters was high. 

It was also important to measure the total sum of squares (TSS) distance of all points 

from the global mean of a variable. To determine the percentage of variance that is explained 

by the clusters, the BSS could be divided by the TSS value and multiplied by 100. A higher 

percentage indicated these clusters are explaining a high degree of variance and are therefore 

effective. This was a useful tool for determining whether adding an additional cluster 

improved the model. If the percentage of variance explained by the model increased with the 

addition of a cluster, it was useful. If the percentage of explained variance did not increase or 

the change was negligible, the addition of that cluster was not needed, and k clusters was 

sufficient.  

One challenge of k-means clustering was that the number of clusters, k, must be 

predetermined. Validity indices exist to assist in optimizing number of clusters. Some of 

these were employed in this analysis. One that was considered was the Dunn Index. This 

measurement compared the smallest distances between clusters to the largest cluster diameter 

(Legány et al. 2006). If the clusters were well-defined, then the distance between individual 

clusters would be large, and the distance between points within a single cluster would be 

small. Therefore, a larger Dunn index indicated an optimal number of clusters. Conversely, if 

the distance between clusters was small and the distance between points within a cluster was 

large, this ratio would be smaller, and the clusters were more ill-defined at that value of k.  

Beyond the Dunn Index, there were other indices to assess the optimal number of k-

means clusters employed in this analysis. Thirty of these were calculated using the NbClust 
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package, a statistical package in R software. This reported the optimal number of clusters as 

reported by the majority of indices included (Charrad et al., 2014).  

Finally, the silhouette widths were considered for the clusters to determine if objects 

within a cluster were assigned well. The individual silhouette width described how well each 

object fit into its cluster. The average silhouette value described how well all objects fit into a 

cluster, and the quality of that cluster as a whole. The silhouette value was calculated in the 

following way. First, the dissimilarity, or the average distance between, an object (i) and the 

members in its cluster was calculated. This value was known as a(i). Then, the lowest 

dissimilarity between that object (i) and all other clusters was calculated. This was the cluster 

that the object is most similar to after the one it is currently in. This value was known as b(i). 

To calculate the silhouette width, a(i) was subtracted from b(i), and the resulting value is 

divided by the greatest value of either a(i) or b(i) (Lengyel & Botta-Dukat, 2019). This is 

described below in Eq. 9: 

 

𝑠(𝑖) =
𝑏(𝑖)−𝑎(𝑖)

max {𝑎(𝑖),𝑏(𝑖)}
    (9) 

 

Where 𝑠(𝑖) is the silhouette width of an object. The silhouette of an object was the 

comparison of a data point’s similarity to its own cluster versus its separation from other 

clusters. Silhouette widths were measured in a range between 1 and -1. A silhouette value 

close to 1 indicated that an object is strongly related to the assigned cluster. The closer a 

silhouette width became to 0, the less likely it was classified correctly. If a silhouette value is  

-1, the data point was clearly mis-clustered. If the average silhouette widths of the data points 

within a cluster collectively had a silhouette value close to 1, the cluster was well-defined 

whereas if the data points had a silhouette close to -1, then the cluster as a whole was ill-
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defined (Kodinariya et al., 2013). Silhouette widths were used to evaluate if any objects were 

potentially misclustered, and which objects were closely related to clusters.  

 

 

3.5 Sensitivity Analysis of Clustering 

A sensitivity analysis was run to determine how impactful certain variables were on 

the model as a whole, or how sensitive they were. One simple and effective way to determine 

a variable’s sensitivity was to remove it from the model. This is known as a jack knife (Kott, 

2001). This approach was used by removing each of the Kaya components one at a time and 

rerunning the cluster model. The most sensitive variables would change the percentage of 

explained variance value (𝐵𝑆𝑆/𝑇𝑆𝑆 ×  100) the greatest amount. This was because 

variables that were controlling the explained variance to a higher degree were more critical to 

the model. 

To further examine the effects of removing one variable, the resulting Dunn Index 

was also compared for each of these jack knife models. A larger change in the Dunn Index 

indicated higher sensitivity, because removing this variable had a strong enough impact to 

change the optimal number of clusters. An unchanged or only slightly shifted Dunn Index 

signified a relatively insensitive variable, or one that did not have a large effect on the 

optimal number of clusters. In addition, the average silhouette widths of the clusters were 

also considered in the jack knife models. If the average silhouette widths shifted greatly with 

a variable removed, it implied that variable was fairly sensitive to the model. Smaller shifts 

in average silhouette widths for the clusters indicated that the removed variable was not as 

sensitive to the overall model.   

In summary, the cluster analysis consisted of determining the optimal number of 

clusters with the total percentage of variance explained, the Dunn Index, the silhouette 



  26 

 

widths, and the Nbclust majority response. The sensitivity analysis consisted of a jackknife 

operation where one variable was removed at a time and the resulting Dunn Index, cluster 

membership, number of negative silhouette values, and percentage variance explained were 

compared to interpret the insights from clusters of similar emitters.  
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4.1 Trend Analysis of Total Emissions 

Trend analysis was performed on the 10 selected countries for the years 2005-2015. 

The emissions patterns were fit to a quadratic curve according to Eq. 3 for all fuel types. 

Besides the United States and Germany, all countries total emissions curves exhibit 

emissions trending upwards. This indicates that they are increasing over time and will not 

peak naturally unless action is taken.  

While all countries were fit with a quadratic term for this analysis, it is important to 

note that there is one unique case: Iceland. If fit with a linear curve, Iceland’s emissions trend 

downward in projections. If fit with a quadratic curve, Iceland’s emissions trend upward in 

projections due to the shape of the curve. For easier comparison, all of the models were fit 

with quadratic curves, including Iceland.  

The maximum R2 value is 0.989 for China’s gas fuel emissions followed by 0.987 for 

China’s liquid fuel emissions.  The minimum R2 value was 0.054 for Iceland’s solid 

emissions. The average R2 value is 0.779 for the ten countries, and therefore the quadratic 

curve is explaining about 78% of the variance. A complete table of the Beta coefficients and 

R2 values can be found in the Appendix. 

Trend analysis projections revealed that between the years 2015 and 2050 China 

could increase emissions by 425% and India could increase emissions by roughly 314%. 

However, there is concern beyond the heavy emitters as well. In this same curve function, 

Saudi Arabia could increase emissions by almost 328%, implying that focusing on only the 

Chapter 4: Results and Discussion  
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heavy emitters in the climate discussion ignores potential future heavy emitters. Argentina’s 

projected emissions in 2050 increase by 99% since 2015, and even the Marshall Islands 

emissions are projected to increase by 64%. In this analysis, only the United States and 

Germany displayed a projection of decreasing emissions. Both countries could approach zero 

emissions before 2050. The 2050 values that were estimated can be found in the Appendix. 

These scenarios are merely a framework for what individual country emissions could be if no 

action is taken. However, they highlight some of the countries that have the potential to emit 

much more in the future such as Saudi Arabia, even if they are not currently considered a 

heavy emitter. 

 

4.2 Trend Analysis of Fuel Usage  

Historic emissions were also considered based on the years used in this analysis, 2005 

to 2015. Figure 2 depicts the trend analysis for the 10 selected countries on solid, liquid, and 

gas fuels, and total emissions. The gray lines indicate the 95% confidence interval for the 

quadratic function on each set of these data points. Emissions are in GtC, MtC, or ktC 

depending on the country.  

The rate of change in emissions over the 10-year span was highest in China, at 

roughly 116 MtC a year. This was followed by India, where there was a rate of about 18.5 

MtC per year. In both of these countries, the largest rate of change for an individual fuel type 

comes from solid fuels. The rate of change of solid fuel emissions in China was close to 77.6 

MtC a year. The United States and Germany both had emissions trending downward, and 

therefore negative rates of change. The United States emissions have decreased at a rate of 

about 17.5 MtC per year over the past 10 years. This is mainly driven by a very large 

decrease in the rate of solid fuel emissions (almost 18.3 MtC per year) but is counteracted by 



  29 

 

an increase in the rate of change of gas fuel emissions (about 8.75 MtC per year). Similarly, 

Germany has also shown decreasing emissions and a negative rate of change in emissions 

over time. Germany has decreased total emissions at a rate of roughly 1.93 MtC per year.  

After the heavy emitters, Saudi Arabia has the next largest rate of change in emissions, at 

about 9.18 MtC per year. Saudi Arabia, along with Ethiopia, primarily emit from liquid fuel 

usage. Comparatively, the Marshall Islands emissions change at a rate of 0.8 ktC a year, a 

rate that is almost entirely comprised of liquid fuel emissions.  

The use of trend analysis answered the first research question: beyond the three heavy 

emitters, what are some country-level patterns of emissions over time? While two of the 

heavy emitters demonstrate the largest emissions rates of change over time, they are mainly 

powered by solid fuel usage. Other countries in this dataset, including the United States, 

show a majority of emissions coming from liquid and gas fuel usage. Besides the United 

States and Germany, the rest of these 10 countries all show positive trending emissions in the 

quadratic model. Different fuel usage profiles emerge even between these 10 countries, 

suggesting the need for more varied solutions and climate targets.  
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Emissions Trends in Select Countries 2005 - 2015 
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Figure 2: Emissions trends as quadratic functions from 2005 – 2015 emissions data points for 10 select 

countries based on fuel type emissions and total emissions. Emissions are in GtC for the United States and 

China, in ktC for Iceland and Marshall Islands, and in MtC for Argentina, Ethiopia, Germany, India, Thailand, 

and Saudi Arabia. Grey bars indicate the 95% confidence interval for the trend lines. Total emissions are the 

sum of all other emissions types. 
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4.3 Kaya Factors Breakdown and LMDI Decomposition 

 While only the selected countries were used for comparing trends in emissions, 

changes in emissions were decomposed using a LMDI analysis for all countries in the years 

2005 and 2015. Countries with insufficient data were removed and 176 countries remained 

for analyses. The Kaya components of the 10 selected countries can be found in Table 4 and 

Table 5 for the years 2005 and 2015 respectively. These tables highlight the difference in 

these 10 countries across the factors. 

 

Table 4: Kaya factors broken down for 10 selected countries in 2005. Population is measured in millions of 

people, Wealth is measured in the 2011 Int. dollar per person, Energy Intensity is in MJ at the 2011 GDP level, 

and carbon intensity is in thousand metric tons of carbon per unit of energy.  

 

 

Study 

Country 
Year 

Population 

(Millions) 

(* Billions)  

Wealth (2011 

Int. Dollars/ 

Person) 

Energy Intensity 

(MJ/2011 Int. 

Dollar) 

Carbon Intensity 

(MtC/Unit of 

Energy) 

Argentina 2005 38.9 15,600 4.60 1.58 × 10-8 

China 2005 1.33* 5,580 10.3 2.10 × 10-8 

Ethiopia 2005 76.3 736 27.5 9.06 × 10-10 

Germany 2005 81.6 38,000 4.51 1.55 × 10-8 

Iceland 2005 0.295 40,900 11.2 4.47 × 10-9 

India 2005 1.15* 3,410 5.88 1.45 × 10-8 

Marshall 

Islands 
2005 0.055 3,230 6.99 2.49 × 10-8 

Saudi Arabia 2005 23.8 45,800 5.34 1.86 × 10-8 

Thailand 2005 65.4 11,500 5.50 1.49 × 10-8 

United States  2005 295 49,500 6.60 1.63 × 10-8 
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Table 5: Kaya factors broken down for 10 selected countries in 2005. Population is measured in millions of 

people, Wealth is measured in the 2011 Int. dollar per person, Energy Intensity is in MJ at the 2011 GDP level, 

and carbon intensity is in thousand metric tons of carbon per unit of energy. 

 

 

All of these countries experienced a rise in population and wealth over time from 

2005 to 2015. The largest positive change in population over this period was in Saudi Arabia. 

The largest positive change in wealth over this period was in China. Out of these 10 

countries, seven of them experienced decreasing energy intensity over time. This suggests 

that over time, there is a lower cost to produce the same unit of output in these countries. 

China showed the largest decrease in energy intensity over time. This is likely the result of 

significant energy policy in China in 2006 aimed at increasing efficiency to meet national 

targets (Zhou et al., 2010). Of these 10 countries, only Iceland, the Marshall Islands, and 

Saudi Arabia had an increase in energy intensity over this time period. China, India, Saudi 

Arabia, and Ethiopia all showed positive change in carbon intensity for this period. A 

positive change in carbon intensity indicates that more carbon is emitted per unit of energy 

produced over time.  

Study 

Country 
Year 

Population 

(Millions) 

(* Billions)  

Wealth (2011 

Int. Dollar/ 

Person) 

Energy Intensity 

(MJ/2011 Int. 

Dollar) 

Carbon Intensity 

(MtC/Unit of 

Energy) 

Argentina 2015 43.1 19,300 4.34 1.52 × 10-8 

China 2015 1.41* 13,200 6.69 2.23 × 10-8 

Ethiopia 2015 101 1,520 13.7 1.79 × 10-9 

Germany 2015 81.8 43,800 3.60 1.54 × 10-8 

Iceland 2015 0.330 44,330 16.6 2.24 × 10-9 

India 2015 1.31* 5,740 4.73 1.79 × 10-8 

Marshall 

Islands 
2015 0.057 3,320 11.4 1.82 × 10-8 

Saudi Arabia 2015 31.7 50,400 5.80 1.90 × 10-8 

Thailand 2015 68.7 15,300 5.41 1.37 × 10-8 

United States 2015 321 53,300 5.41 1.51 × 10-8 
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To capture the change in these values over the 10-year span, the LMDI decomposition 

was conducted. This analysis was completed on 176 countries, for each of their Kaya 

components. For continuity of discussion, only results of the same 10 study countries are 

presented. The results of this decomposition can be seen in Figure 3 below. 

 
 

LMDI Decomposition Analysis for Selected Countries  

 

Figure 3: LMDI breakdown of Kaya components for 10 selected countries from 2005 - 2015. Panel 1 includes 

the heavy emitters measured in GtC, Panel 2 includes the moderate emitters in MtC, and Panel 3 includes the 

low emitters in ktC. The circle represents the change in CO2 over time for this period. Each Kaya component is 

represented by how attributable the change in that factor over time is to the change in CO2 over time.  
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 This figure separates the 10 study countries into the three heaviest emitters, four 

moderate emitters, and the three lowest emitters. All three heavy emitters have a deceasing 

energy intensity over time in common. This indicates that it is taking less energy over time to 

produce one unit of economic output. All three heavy emitters also have an increasing wealth 

component over time. Comparatively, population and carbon intensity are not as influential 

of Kaya components to changing CO2  emissions for this period. Only the United States has a 

decreasing carbon intensity value, along with a negative CO2 value over time. This indicates 

lower CO2 emissions per unit of energy over the 10-year study period. The United States is 

an example of how there are differences in emissions drivers that lead to different emissions 

pathways even within the heaviest emitters. 

For the moderate emitters, an increasing wealth component as well as an increasing 

population growth is common. Saudi Arabia is distinguished by the largest population 

growth over time of all 10 countries. Although there is large population growth across the 

Middle East region, Saudi Arabia has a larger percentage population growth than Bahrain, 

Jordan, Qatar, the United Arab Emirates, Oman, and Kuwait (Rahman et al., 2017). 

Furthermore, the highest rate of growth within Saudi Arabia is in urban areas, which 

correlates with the growth of emissions from transportation and electricity energy sectors 

(Rahman et al., 2017). Of the four moderate emitters in this group, Argentina and Germany 

have decreased their carbon intensity over time. This indicates that over time, these countries 

are able to emit less CO2 per unit of energy consumed. Germany has a comparatively larger 

negative energy intensity, similar to some of the heavy emitters.  

 The low emitters have more unique profiles of emissions drivers. Ethiopia is 

characterized by a large, positive change in carbon intensity. Egypt and Sudan, Ethiopia’s 
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geographical neighbors, also share this large increase in carbon intensity. Currently, 

Ethiopia’s carbon intensity is largely driven by the agriculture sector (Hamilton & Kelly, 

2017). Ethiopia also shows a decreasing energy intensity, similar to the heavy emitters. Only 

Iceland and Saudi Arabia exhibit a positive change in energy intensity, meaning that more 

energy is required over time to produce the same unit of output. Finally, the Marshall Islands 

is barely visible at all, which demonstrates the vast differences in scale of these different 

countries in terms of emissions.  

This analysis answers the second research question which focuses on determining 

global drivers of emissions. These results demonstrate that while there are some similarities 

among emitters, there are also large differences in emissions drivers. These drivers can be 

traced back to specific energy sectors as in Ethiopia, or specific policies such as in China. 

Whatever the cause these drivers appear to vary greatly by country. Overall, the drivers of 

emissions are unique at the country level and present different challenges for individual 

countries to mitigate emissions. These differences could be more effectively met with 

differentiated climate goals if every country is to be involved with mitigation efforts. 

  

 

4.4 Cluster Analysis 

These LMDI values were ultimately used in a K-means cluster analysis. Exploratory 

cluster analysis identified China, US, and India as outliers. These countries often clustered 

individually, which does not allow for comparison with other countries. All three countries 

exhibit population and carbon intensity LMDI values that are more than three standard 

deviations outside the mean for all countries. Both China and India’s LMDI wealth increase 

components are roughly two standard deviations away from the mean of all values. India’s 
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LMDI energy intensity value is over three standard deviations from the mean of all values. 

Only the US and China have emitted over 1 GtC in any years from 1990 to 2015. These 

extreme differences from other countries make these three outliers, and therefore they will 

not be included in the clustering models any further. 

The optimal number of clusters is decided from a range of one cluster to 20 clusters. 

The Dunn Index reveals that three clusters are the optimal amount for this remaining dataset. 

This is supported by 10 of the other 26 methods for choosing optimal clusters in the NbClust 

package. For three clusters, the Dunn Index is 0.979, where the next closest Dunn Index, 

0.660, was indicated for two clusters.  

Using three clusters explains 57.6% of the total variance of the LMDI values; the 

addition of one more cluster would only improve the performance by 5.8%, and two more 

clusters an additional 14.4%. While more variance is explained in models with more clusters, 

the cluster membership did not lend itself to grouping and comparison as well. The five-

cluster model explains 77.7% of the variance, but it only does so because Japan and Russia 

separate from the smallest cluster into individual clusters. Because this research is focused on 

grouping countries, and had already separated out 3 outliers, choosing a model that further 

isolated countries is not effective for answering the research questions. The highest Dunn 

Index and the NbClust recommendation methods are utilized to choose the optimal number 

of clusters. Both of these methods suggest three clusters. Table 6 below further shows the 

values for multiple numbers of clusters. 
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Table 6: Dunn Index, number of indices that selected k as the best cluster value, Percentage Variance 

Explained, Average Within cluster Sum of Squares (WSS), Between Cluster Sum of Squares (BSS) and Total 

Sum of Squares (TSS) for 3, 4 and 5 clusters. The Average WSS is calculated by adding up the WSS values for 

all clusters and dividing by the number of clusters. WSS, BSS, and TSS are in Euclidean distance.  

 

 

Number of 

Clusters 
Dunn 

Index 

Nbclust 

Package 

%Variance 

Explained 

Average 

WSS 
BSS TSS 

3 Clusters 0.979 10 57.5 8.07×109 3.28x1010 5.70 x1010 

4 Clusters 0.299 2 63.3 5.23×109 3.61x1010 5.70 x1010 

5 Clusters 0.211 4 77.7 2.62 x 109 4.4 x 1010 5.70 x1010 

 

 

 These optimal three clusters contain the following groups: a large cluster with 146 

members (Cluster 3), an intermediate cluster with 23 members (Cluster 2), and a small cluster 

of four members (Cluster 1). Overall, Cluster 3 contains mostly developing or small nations. 

Cluster 2 contains some Middle Eastern countries, some European countries, Canada, 

Australia, and Brazil. Cluster 1 contains only four members: Russia, Japan, Indonesia, and 

Germany. A full breakdown of the clusters and countries they contain can be found in the 

Appendix. The within cluster variance is used to assess compactness. This is calculated by 

dividing each within cluster variance by the number of countries in each cluster. The within 

cluster variance is 2.7x109 in Cluster 1, 3.7x108 for Cluster 2, and 3.2x107 for Cluster 3. Cluster 

3 is the most similar due to having the smallest WSS, whereas Cluster 1 is the least similar due 

to having the largest WSS. This is interesting since cluster 3 is the largest cluster. This implies 

that the 146 countries in cluster 3 emit more similarly than the 4 countries in Cluster 1.  

Silhouette widths are used to assess how well individual members fit within the given 

clusters. A negative silhouette width indicates that a country is misclustered. Germany and Iraq 

have the largest negative silhouette widths of all countries, with values of -0.383 and -0.234 

respectively. Germany’s closest neighboring cluster is Cluster 2 and Iraq’s closest is Cluster 
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3. Other notable potentially misplaced countries included Indonesia, Saudi Arabia, Egypt, 

France, Ukraine, Thailand, Brazil, Spain, Nigeria, Qatar, Turkmenistan, and Vietnam.  

Indonesia is placed in Cluster 1 while it’s neighboring cluster is 2. The rest of these countries 

are all members of Cluster 2 and the closest neighboring cluster is 3.  

To better understand what is driving each cluster, the cluster means are considered. 

Cluster means can be seen in Figure 4 below. The mean of largest magnitude for Cluster 1 is 

the extremely negative energy intensity value and a large, positive wealth value. The average 

LMDI wealth index value among all countries in this research is 3,934.7. Japan’s wealth 

value is one standard deviation from this mean while Russia’s is more than three standard 

deviations away from this mean. The high wealth component in this cluster could be being 

driven by Russia’s large change in wealth over time. These countries appear to be more 

similar in terms of energy intensity. They are all on a similar order of magnitude and 

negatively changing over time. While the mean LMDI energy intensity value for all countries 

is -4,025.6, these countries’ LMDI energy intensity values are three or more standard 

deviations away. Cluster 1 can be described as having large wealth growth and large decrease 

in energy intensity over time. However, it is important to note the large variance in Cluster 1. 

While these means are useful for telling what drives the clusters, this cluster in particular is 

very spread out making the interpretation more complex.  

Cluster 2 shows similar drivers as Cluster 1, just of a lesser magnitude. Cluster 2 

shows a moderate wealth increase over time and a moderate decrease in carbon intensity over 

time. The wealth outlier in Cluster 2, shown as a dot in Figure 4, is the Republic of Korea. 

Perhaps the most striking thing about Cluster 2 is its slightly negative carbon intensity mean. 

The most negative carbon intensity LMDI values in this cluster are coming from France, 
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Spain, Canada, and the United Kingdom. This cluster also has the largest population mean of 

all three clusters. Cluster 2 does contain some countries with very high population growth 

over time, such as Saudi Arabia, Qatar, and Mexico, which could be driving the higher 

population mean. The population outlier depicted as a dot above cluster 2 in Figure 4 is 

Saudi Arabia. However, while 20 countries in this dataset did experience population loss at 

low levels over this time period, 152 countries experienced positive population growth over 

time. Therefore, population growth does not have much effect on defining clusters because 

population growth is a common factor in all of the clusters. 

Cluster 3 contains the rest of the countries in the world closely clustered together with 

the least amount of WSS variance. These countries have lower wealth growth over time, as 

well as lower energy intensity growth over time. These countries also have a small, positive 

carbon intensity mean. While many countries in this cluster have negative carbon intensity 

index values (the most negative of which being Italy), there are some countries with very 

high carbon intensities present in this cluster such as Libya, Iran, Singapore, and Pakistan. 

The outliers present in the population mean of Figure 4 depicted as dots above cluster 3 are 

the United Arab Emirates, Iran, Kuwait, and Pakistan respectively. The means of the clusters 

and the variances within each cluster are presented in Figure 4 below.  
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Cluster Mean Plots for Kaya Components 

Figure 4: Cluster means are depicted as the black horizontal lines in the boxes describing each cluster. The box 

structure spans the interquartile range, while the lines indicate the highest and lowest values. Outliers are 

indicated by dots outside of the box and whisker structure.  

 

 

The study group members separated into the different clusters, which is useful for 

comparison and discussion. Of the 10 selected countries, Argentina, Ethiopia, Iceland, and 
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Marshall Islands are in Cluster 3. Saudi Arabia and Thailand are in Cluster 2. Germany is in 

Cluster 1.  

Some of the 10 study countries emerge more clearly if they are separated by one 

Kaya component on each axis. In Figure 5, all countries are plotted on an axis of change in 

wealth against an axis of change in carbon intensity. In this image, it is evident how spread 

apart cluster 1 (consisting of Russia, Japan, Indonesia, and Germany) is. While Russia has a 

low change in carbon intensity and a high change in wealth, Japan has the opposite condition: 

a high change in carbon intensity and a low change in wealth. Still, these two countries 

cluster together in Cluster 1. 

Germany fades into the group of countries in Cluster 2 and some of Cluster 1. The 

low decrease in carbon intensity makes Germany more comparable with Cluster 2 and 

Cluster 3 as opposed to the larger decrease in carbon intensity seen in Russia that is driving 

cluster 1. Thailand, another one of the 10 countries, can be visible just below Germany. 

Thailand shows a similar positive change in wealth and slight decrease in carbon intensity as 

well.  

In this sense, Cluster 1 is a study in just how different drivers of emission can be. 

Germany, a member of Cluster 1, shows similarities to Thailand, a member of Cluster 2. This 

shows the potential for some overlap of climate solutions between unlikely countries. 

However, Japan and Russia are almost opposites, even if they are clustered together. One 

solution would not be effective for each of these countries. Overall, this shows the need for 

differentiated climate targets even when there are some similarities. 
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Wealth and Carbon Intensity, All Countries by Cluster 

Figure 5: Clustered countries compared on an axis showing change in wealth for 2005-2015 and an axis of 

change in carbon intensity over 2005-2015. Cluster 1 is shown in the lightest text, while Cluster 3 is shown in 

the darkest text.  

Germany stands out more if it is compared to the other countries on an axis of change 

in wealth against an axis of change in energy intensity, which is shown in Figure 6. Again, 

the extreme cases of Japan and Russia can be seen when these Kaya components are 

compared. However, Germany stands apart from Cluster 1 and Cluster 2 when these 

components are compared due to its greater decrease in negative energy intensity. Past 

research has linked this decrease of energy intensity in Germany to the shifting of resources 

out of the manufacturing industry and into the services industry (Koesler et al., 2016). It 

appears that countries in Custer 2 are beginning to move towards Germany’s position 

between these two Kaya components. Other European countries such as Ukraine, Poland, 

United Kingdom, and Spain are showing varied levels of decreasing energy intensity over 
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time and increasing wealth over time. Saudi Arabia, one of the study countries, stands out as 

having one of the highest increases in energy intensity. Other Middle Eastern countries are 

also separating out due to increasing energy intensity; for examples the United Arab 

Emirates, Oman, and Iran. This could be due to increased energy demand from a growing 

population, a growing industrial sector, and a growing standard of living throughout the 

region in this time period (Nematollahi et al., 2014). Again, the differences in drivers are 

evident here between the 10 study countries as well as some of the extreme cases in the 

clusters. A single target goal might not effectively encompass all of these drivers. 

Wealth and Energy Intensity, All Countries by Cluster 

Figure 6: Clustered countries compared on an axis showing change in wealth for 2005-2015 and an axis of 

change in energy intensity over 2005-2015. Cluster 1 is shown in the lightest text, while Cluster 3 is shown in 

the darkest text.  
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Finally, the dispersion of the clusters on the change in wealth over time on one axis and 

the change in population on the other axis is considered. The Middle Eastern countries such as 

Saudi Arabia, United Arab Emirates, Qatar, Iran, and Kuwait all show a large, positive change 

in population, even though they are members of different clusters. Countries in Cluster 1 do 

not show any large increases in population. Germany can be found on the far-left side of Figure 

7, showing a small increase in population over these years. Some of the countries that 

maintained a large growth in wealth despite a lower growth in population are seen in Figure 7 

as well, for examples Korea and Poland. While population is not a large driver for the heavy 

emitters, it could potentially be a larger driver for countries in the Middle East that are showing 

large, positive changes in population over time. 

Future climate targets will need to incorporate drivers of emissions from all countries, 

not just drivers that have guided the paths of the heavy emitters. This can be seen even in the 

few study countries that were followed. While Germany’s emissions are currently being driven 

down by a decrease in energy intensity, Saudi Arabia’s are being driven up by an increase in 

population and Ethiopia’s are being driven up by an increase in carbon intensity.  

Countries in Cluster 3 are currently being grouped in a small cluster. However, if the 

drivers of emissions such as wealth and energy intensity continue to rise, these countries could 

begin contributing more to global emissions totals in even different ways than Cluster 1 and 

Cluster 2. One climate target might not capture just how different these drivers are as global 

emissions continue to rise.  
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Wealth and Population, All Countries by Cluster 

Figure 7: Clustered countries compared on an axis showing change in wealth for 2005-2015 and an axis of 

change in population intensity over 2005-2015. Cluster 1 is shown in the lightest text, while Cluster 3 is shown 

in the darkest text.  

 

 

4.5 Sensitivity Analysis 

 

Sensitivity analysis reveals that clustering is most sensitive to change in wealth. 

Removing the wealth index decreases the Dunn Index by 54.3%. When wealth is removed, 

Cluster 1 changes the most in terms of country membership. While the complete cluster model 

contains Germany, Indonesia, Japan, and Russia in Cluster 1, the model with wealth removed 

contains more countries  in Cluster 1: Iran, Qatar, United Arab Emirates, and Saudi Arabia. 

Removing the wealth factor completely changes the members of this cluster, demonstrating its 

sensitivity in this model. Removing wealth causes both the TSS and BSS values to decrease. 
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This means that the total distance of the model as well as distances between clusters has gone 

down, implying that wealth is a driver that effectively separates countries and clusters from 

each other.  This low TSS values causes the variance explained value to go up.  

After a change in wealth, carbon intensity is the most sensitive Kaya component. 

Removing carbon intensity decreases the Dunn Index by 24.8%. Eleven countries are 

potentially misclassified in this model. Cluster 1 contains the same countries as the non-jack 

knife model while Cluster 2 contains similar countries except for Qatar, which moves from 

Cluster 2 to Cluster 3. The lowest Dunn Index shift results from removing population, 

indicating that population as not an overly sensitive factor. The model with population 

removed has a similar BSS to the model with nothing removed and explains only 5.2% more 

of the variance. Population growth does not have much effect on defining clusters because 

population growth is a common factor in all of the clusters. Conversely, wealth is not a 

common factor among all countries, and that disparity is reflected in the sensitivity of this 

variable. The results of the sensitivity analysis are shown in Table 7 below. 

 

 Table 7: Sensitivity Analysis measures are shown such as Dunn Index, membership in Cluster 1, membership 

in Cluster 2, membership in Cluster 3, Number of negative silhouette widths, Percent variance explained, 

Between Cluster Sum of Squares (BSS) and Total Sum of Squares (TSS). Percent Variance is calculated by 

dividing TSS by BSS and multiplying by 100.   

 

Factor 

Removed 

Dunn 

Index 

Cluster 

1 

Cluster 

2 

Cluster 

3 

Negative 

Silhouette 

Values 

Percent 

Variance 
BSS TSS 

None  0.9790 4 23 146 14 57.5 3.28x1010 5.70 x1010 

Population  0.9726 3 19 151 8 62.7 3.22x1010 5.13x1010 

Wealth  0.4471 4 10 159 5 67.8 2.34x1010 3.45x1010 

Energy 

Intensity 

 

0.7361 1 21 151 6 63.0 2.06x1010 3.27x1010 

Carbon 

Intensity 
0.6620 4 22 147 11 63.4 3.19x1010 5.03x1010 
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One of the 10 focal countries in this analysis is Germany. The pattern of Germany’s 

emissions can be described as decreasing, only two of the 10 countries in this study to do so. 

This emissions decrease is primarily from a decrease in emissions from gas fuel emissions, as 

well as a slower decrease in liquid and solid fuel emissions. Germany’s decreasing emissions 

are driven primarily by a decrease in energy intensity. Germany clustered in Cluster 1, which 

was characterized by an increase in wealth and a decrease in energy intensity and likely related 

to the shifting of the economy from manufacturing to service based. The decrease in solid and 

liquid fuel emissions paired with the decrease in energy intensity over time depicts a country 

that will likely continue to decrease emissions over time.  

Comparatively, another one of these 10 focal countries is Saudi Arabia. The pattern of 

Saudi Arabia’s emissions is increasing, with one of the largest changes over time of total 

emissions in this study besides the heavy emitters. This is largely driven by an increase in 

emissions from liquid emissions over time. The drivers of emissions for Saudi Arabia are an 

increase in energy intensity, and an increase in population over time. Saudi Arabia clustered 

in Cluster 2, where it stands out for a large growth in energy intensity and growth in population 

from the other members of the cluster. Unlike the case of Germany, Saudi Arabia’s positive 

trending patterns and drivers do not indicate a peak anytime soon in emissions. 

Finally, consider the case of Ethiopia. Ethiopia has an emissions pattern that is 

positively trending over time, due to emissions from primarily liquid fuel usage. The main 

drivers of emissions are a growth in carbon intensity, primarily from agriculture, a similar 

Chapter 5: Conclusions & Future Research 
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growth in population, and a negative energy intensity over time. It appears that Ethiopia’s 

emissions will continue to trend upward over time, given the pattern of emissions from fossil 

fuels and the drivers increasing emissions outweighing the drivers decreasing them. Ethiopia 

clustered in Cluster 3, which was made up of similar developing countries. However, 

Ethiopia’s government has been actively involved in global climate plans and initiated the 

Climate-Resilient Green Economy in 2011. This plan strives to develop Ethiopia into a middle-

income economy, withstand the impacts of climate, and install expanded hydroelectric and 

wind power systems all without raising the net level of carbon emissions throughout this time 

(Gashaw et al., 2014).  

These 3 cuntries (Germany, Saudi Arabia, and Ethiopia) represent different nations that 

will have to abide by a universal climate goal. A single global climate goal would have to 

encompass the emissions patterns and drivers of countries like Saudi Arabia, which is 

experiencing large population growth driving emissions; countries like Germany, which is 

experiencing a decline in a emissions over time and a decreasing energy intensity over time; 

as well as countries like Ethiopia, with signs of increasing emissions with development but 

aggressive policy to counteract such trends (Gashaw et. Al, 2014). The same global target for 

these three countries will also have to be reachable for the heavy emitters, like China, the 

United States, and India, as well as countries already starting to feel the effects of climate 

change, like the Marshall Islands.  

The use of data analytics tools makes it possible to consider all countries at a high level 

while also looking more in depth into certain countries. These tools allowed for considering 

10 countries specifically in a trend analysis and all countries in a decomposition and cluster 

analysis. The results from these analyses suggest that one climate path isn’t truly effective for 
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the many different types of countries emitting currently and those who will emit even more in 

the future. 

Future research could consider a different wealth measurement than GDP in this same 

model to determine a more accurate measure of their economic situation. While GDP is used 

predominantly in the literature, it could be more insightful to use a different index, such as the 

Gross National Income, to measure economic progress over time.  

Future research could also include altering the time frame used in this research study. 

In 2015 the Paris Agreement was reached, and the United Nations published the Sustainable 

Development Goals. This model could look very different with those initiatives in place 

guiding international and country-level policy and could include a variable that captures policy 

level. A previous study by Pani and Mukhopadhyay (2010) stated that income was the largest 

driver of emissions over the years 1993 – 2004. This study reached a similar conclusion, that 

wealth was the most sensitive driver of emissions in the model. Repeating this study for the 

years 2005 -2015 could continue this trend or show results that diverge from these.  

This model is an example of a data-driven approach to climate solutions. Data analytics 

tools can derive deeper insights about past trends and build more accurate predictions of the 

future. This can determine if current policy is truly aligning with the underlying drivers and 

patterns of emissions at the country level. Policymakers can use these insights to develop more 

thorough solutions. At the global level, it can be used to determine what more effective climate 

targets would be, and which paths are most possible for individual countries to follow in the 

global mitigation effort.  
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Table A1. Table of Trend Analysis Results. Beta Coefficients are found in the fitted quadratic function, 

Adjusted R2 Value measures explained variance, and 2050 projected value is measured in metric tons of C. 

*Values were below zero by 2050.  

 
Country Fuel Type Beta1 Beta2 Adjusted R2 2050 Value (C) 

Argentina total  2.57×105 -6.37×101 0.86 1.24×108 

 gas -1.06×103 3.63×101 0.80  

 liquid 2.17×105 -5.38×101 0.64  

 solid -1.90×104 4.74×100 0.08  

China total  3.67×107 -9.09×103 0.97 1.45×1010 

 gas -1.04×106 2.59×102 0.99  

 liquid -8.96×105 2.26×102 0.99  

 solid 3.63×107 -9.01×103 0.96  

Ethiopia total  -1.19×105 2.97×101 0.96 2.00×107 

 liquid -4.65×104 1.16×101 0.90  

 solid -1.52×104 3.78×100 0.97  

Germany total  -1.05×106 2.60×102 0.64 0* 

 gas 2.08×105 -5.20×101 0.76  

 liquid -5.80×105 1.44×102 0.66  

 solid -6.66×105 1.66×102 0.08  

Iceland total  -7.36×103 1.83×100 0.75 2.46×105 

 liquid -8.58×103 2.13×100 0.64  

 solid -6.57×102 1.63×101 0.05  

India total  -2.07×105 5.90×101 0.98 2.63×109 

 gas 7.10×105 -1.76×102 0.74  

 liquid -8.61×105 2.16×102 0.83  

 solid -1.19×105 3.46×101 0.97  

Marshall Islands total  3.29×102 -8.16×102 0.93 6.46×104 

 gas 3.29×102 -8.16×102 0.93  

Saudi Arabia total  -3.03×106 7.56×102 0.89 8.57×108 

 gas -1.91×106 4.75×102 0.80  

 liquid -1.15×106 2.87×102 0.88  

Thailand total  8.89×104 -2.17×101 0.90 8.45×107 

 gas 2.64×105 -6.54×101 0.92  

 liquid -3.07×105 7.64×101 0.30  

 solid 2.87×105 -7.12×101 0.89  

United States total  -7.10×106 1.76×100 0.82 0* 

 gas -1.84×106 4.59×102 0.96  

 liquid -7.24×106 1.80×103 0.93  

 solid 2.58×106 -6.46×102 0.91  
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Table A2: All Countries used in cluster analysis listed with LMDI values for 4 Kaya components as well as 

final cluster placement 

 

Country LMDI (pop.) LMDI (wealth) LMDI (EI) LMDI (CI) Cluster 

Afghanistan 321.96 520.09 725.62 537.39 3 

Albania -79.30 497.30 -474.91 155.91 3 

Algeria 6360.35 3769.48 7801.81 -5340.59 3 

Angola 2571.10 1856.01 -1685.00 1456.71 3 

Antigua and Barbuda 19.70 -8.79 12.66 8.43 3 

Argentina 5039.23 10399.75 -2902.98 -1749.37 3 

Armenia -23.22 526.37 -251.77 -132.69 3 

Australia 16638.71 10498.74 -17197.19 -5589.72 2 

Austria 922.10 1217.01 -2686.21 -2898.24 3 

Azerbaijan 1171.43 7242.03 -7862.74 305.88 3 

Bahamas, The 73.60 -69.32 152.68 -105.96 3 

Bahrain 3057.97 114.97 -966.45 1336.08 3 

Bangladesh 1841.00 7627.72 -1474.36 3282.83 3 

Barbados 11.32 -8.30 -47.21 22.19 3 

Belarus -207.33 6651.28 -8031.71 1201.65 3 

Belgium 1923.40 1978.99 -6142.61 -327.89 3 

Belize 32.47 2.23 6.02 2.27 3 

Benin 303.09 145.51 197.92 356.58 3 

Bhutan 21.21 111.71 -81.85 131.94 3 

Bolivia 703.86 1414.84 -109.98 128.05 3 

Bosnia -442.55 1421.35 1191.20 -1518.85 3 

Botswana 212.48 376.33 -105.00 -116.47 3 

Brazil 10791.51 20853.82 5950.45 5378.19 2 

Brunei Daru 209.36 -164.10 120.82 398.53 3 

Bulgaria -826.53 3969.04 -3747.14 -265.53 3 

Burkina Faso 166.06 128.33 -72.62 381.04 3 

Burundi 22.72 2.31 -47.48 90.45 3 

Cambodia 220.19 722.65 66.12 586.73 3 

Cameroon 412.77 224.25 -449.30 965.84 3 

Canada 17178.79 16864.75 -25615.74 -11534.54 2 

Central African Republic 7.66 -13.33 15.99 5.68 3 

Chad 80.19 33.01 -64.84 15.65 3 

Chile 2055.50 5301.53 -2452.74 101.15 3 

Colombia 2252.06 7075.28 -4684.36 4436.01 3 

Comoros 10.00 2.13 0.04 -4.17 3 

Congo, Dem. 167.61 200.62 -59.49 54.81 3 

Congo, Rep. 150.88 81.52 227.92 153.64 3 

Costa Rica 241.46 570.05 -396.62 -239.79 3 

Cote d'Ivoire 597.26 470.17 -313.47 103.05 3 

Croatia -182.18 278.75 -836.51 -693.22 3 

Cyprus 225.54 -138.93 -252.70 -205.92 3 

Czech Republic 983.59 5161.86 -8035.98 -3568.97 3 

Denmark 502.96 247.71 -2544.71 -2659.56 3 

Dominica 0.00 7.12 9.09 -7.21 3 

Dominican Republic 710.24 2305.08 -2117.50 588.00 3 

Ecuador 1579.44 2273.60 907.10 -1169.70 3 

Egypt, Arab 10720.98 12173.83 -9384.42 2271.39 2 

El Salvador 79.70 306.93 -378.45 110.75 3 

Equatorial 817.27 -247.21 -115.30 -864.76 3 

Estonia -138.63 806.21 -620.63 -166.81 3 

Ethiopia 661.84 1720.98 -1660.29 1618.52 3 
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Fiji 23.76 71.24 110.37 83.63 3 

Finland 546.15 144.27 -1440.48 -2478.56 3 

France 5019.44 3616.15 -17424.32 -11603.66 2 

Gabon 465.89 -21.99 297.64 -639.91 3 

Gambia, The 34.26 -8.39 -0.62 28.75 3 

Georgia -88.41 1061.34 -0.88 325.53 3 

Germany 467.93 29441.32 -46710.48 -2283.01 1 

Ghana 738.84 1234.00 -558.45 1174.22 3 

Greece -1136.62 -3689.89 -613.65 -3807.76 3 

Grenada 3.02 3.93 5.23 -0.18 3 

Guatemala 824.79 593.12 457.32 -895.98 3 

Guinea 138.43 92.41 -56.07 61.80 3 

Guinea-Bissau 17.03 4.70 -9.87 6.14 3 

Guyana 12.95 188.72 -126.09 82.42 3 

Haiti 102.26 50.31 17.31 62.96 3 

Honduras 476.71 357.66 -61.04 -101.04 3 

Hong Kong  703.45 3277.72 -2802.08 -1507.13 3 

Hungary -430.62 1659.15 -2453.47 -2468.44 3 

Iceland 64.40 45.65 222.26 -397.00 3 

Indonesia 15249.49 47707.90 -37025.03 20574.04 1 

Iran 17829.61 8590.61 15070.33 8089.39 3 

Iraq 10535.74 11890.78 -446.89 -7226.76 2 

Ireland 1255.49 2528.00 -5061.60 -738.16 3 

Israel 3359.54 2852.73 -2724.15 -1008.61 3 

Italy 4206.61 -9292.70 -18057.38 -15005.09 3 

Jamaica 131.02 -112.40 -629.55 -177.49 3 

Japan -872.16 18367.14 -95981.37 57880.52 1 

Jordan 3045.46 -246.10 -1156.35 -248.75 3 

Kazakhstan 7474.00 22615.37 -3494.61 -9107.00 2 

Kenya 899.43 825.06 -212.00 797.80 3 

Kiribati 3.10 0.08 -4.55 2.38 3 

Korea, Republic 6132.62 43744.44 -12862.90 -561.08 2 

Kuwait 11703.10 -6413.57 620.23 -6.42 3 

Kyrgyz Republic 340.18 621.03 -39.75 413.35 3 

Lao PDR 175.70 666.65 184.22 1070.40 3 

Latvia -236.74 533.22 -449.80 12.97 3 

Lebanon 1802.25 671.98 -182.87 -41.14 3 

Lesotho 18.44 239.62 -191.47 24.41 3 

Liberia 83.13 67.05 -52.98 56.92 3 

Libya 1507.78 -8781.94 -2360.07 10935.21 3 

Lithuania -483.64 1376.06 -1684.65 571.00 3 

Luxembourg 602.99 138.30 -1272.01 -92.76 3 

Macao SAR 117.55 238.45 -171.65 -113.35 3 

Madagascar 195.98 -4.91 49.83 281.16 3 

Malawi 79.58 77.56 -195.85 100.70 3 

Malaysia 9302.49 17778.57 -11877.88 -1191.64 2 

Maldives 87.05 78.29 30.16 -4.50 3 

Mali 154.05 42.63 -132.13 549.45 3 

Malta 39.87 174.50 -393.68 -114.69 3 

Marshall Islands 1.24 0.93 16.86 -11.04 3 

Mauritania 172.74 104.69 -34.63 113.20 3 

Mauritius 30.39 387.54 -200.78 32.85 3 

Mexico 18038.17 10387.56 -24404.23 565.71 2 

Micronesia 1.00 -1.49 9.71 -3.22 3 

Moldova -28.69 485.98 -509.90 67.13 3 

Mongolia 687.50 2519.62 -1194.88 1990.71 3 
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Morocco 1875.65 4515.31 -2483.58 322.61 3 

Mozambique 277.79 430.34 -279.46 842.73 3 

Myanmar 327.87 3596.70 -2669.52 1677.84 3 

Namibia 149.00 255.68 -119.86 173.18 3 

Nepal 58.87 465.52 -215.21 554.63 3 

Netherlands 1656.81 3467.36 -9258.88 1566.52 3 

New Zealand 1033.63 893.82 140.34 -1850.65 3 

Nicaragua 176.56 347.24 -102.72 -144.55 3 

Niger 131.89 58.06 -1.73 168.65 3 

Nigeria 8040.79 9755.51 -9004.03 -6081.10 2 

North Macedonia 22.61 756.45 -890.20 -1032.46 3 

Norway 1412.61 239.17 -219.63 -148.64 3 

Oman 6557.12 -700.28 5673.88 -1917.69 3 

Pakistan 9599.67 6384.32 -7003.80 5121.86 3 

Palau -6.37 10.57 -11.86 8.66 3 

Panama 421.17 1336.58 -908.70 313.01 3 

Papua New Guinea 350.61 596.07 -319.68 211.32 3 

Paraguay 187.52 434.46 -227.04 278.24 3 

Peru 1082.95 5747.76 188.66 -2815.99 3 

Philippines 4323.68 9285.28 -6023.87 4047.08 3 

Poland -703.12 31316.74 -29167.09 -6231.07 2 

Portugal -208.10 40.37 -2556.68 -1630.27 3 

Qatar 22382.73 1088.09 -2584.20 -5639.96 2 

Romania -1643.79 8155.63 -9358.01 -3925.69 3 

Russia 4109.08 110657.09 -70641.95 -22615.72 1 

Rwanda 49.60 100.83 -89.48 57.05 3 

Samoa 4.00 0.48 14.71 0.81 3 

Sao Tome and Principe 6.09 6.96 -5.28 2.23 3 

Saudi Arabia 40028.82 13593.05 11427.42 2850.70 2 

Senegal 595.37 244.95 31.12 443.22 3 

Seychelles 10.40 61.87 -144.45 18.18 3 

Sierra Leon 50.75 46.76 -65.16 109.65 3 

Singapore 3254.51 3312.57 -4285.68 6251.67 3 

Slovak Republic 65.50 3399.28 -4980.77 -735.53 3 

Slovenia 144.10 292.78 -855.24 -485.75 3 

Solomon Islands 11.93 10.54 -18.95 4.47 3 

South Africa 17471.99 14045.04 -18937.91 296.43 2 

Spain 4772.34 -875.19 -16599.70 -15252.17 2 

Sri Lanka 289.90 2335.29 -1579.51 1155.25 3 

St. Kitts  4.81 3.80 -12.82 14.21 3 

St. Lucia 9.91 6.06 1.41 -5.39 3 

Sudan 933.48 897.36 -1647.41 2224.45 3 

Suriname 51.35 87.50 -110.58 6.73 3 

Sweden 938.30 1454.30 -3734.57 -2281.58 3 

Switzerland 1219.27 796.39 -2778.58 -796.21 3 

Tajikistan 213.64 427.84 -500.39 558.79 3 

Tanzania 692.22 750.30 -513.49 1104.36 3 

Thailand 3419.66 19596.92 -1083.19 -6181.97 2 

Togo 138.95 129.11 -16.58 102.77 3 

Tonga 0.00 3.18 -2.67 1.50 3 

Trinidad 637.10 2027.72 -472.84 25.97 3 

Tunisia 722.96 1483.38 -224.79 60.65 3 

Turkey 11506.14 28060.90 -12008.72 3137.69 2 

Turkmenistan 2522.33 13415.52 -10080.20 192.94 2 

Uganda 309.84 314.82 -104.65 344.13 3 

Ukraine -3030.10 -1872.62 -27801.31 -4816.95 2 
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United Arab Emirates 29130.17 -13724.59 6070.92 -33.86 3 

United Kingdom 11341.18 4650.01 -42068.77 -11430.71 2 

Uruguay 45.39 728.08 127.56 -642.49 3 

Uzbekistan 4715.42 18230.81 -27327.31 621.18 2 

Vanuatu 6.41 1.41 5.26 6.92 3 

Venezuela 5929.98 2713.98 -10097.59 3629.98 3 

Vietnam 3784.54 18642.88 -443.53 2706.07 2 

Yemen, Rep. 1231.97 -1399.69 -1970.58 266.64 3 

Zambia 261.61 337.22 -308.98 321.09 3 

Zimbabwe 422.62 752.81 -537.35 -218.34 3 
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